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We study the Josephson current, IJ, in a junction consisting of two s-wave superconductors that are separated
by a ferromagnetic barrier possessing magnetic and nonmagnetic scattering potentials, g and Z, respectively.
We discuss the general dependence of IJ on g, Z, and the phase difference � between the two superconductors.
Moreover, we compute the critical current, Ic, for given g and Z, and show that it possesses two lines of
nonanalyticity in the �g ,Z� plane. We identify those regions in the �g ,Z� plane where the Josephson current
changes sign with increasing temperature without a change in the relative phase between the two supercon-
ductors, i.e., without a transition between the 0 and � states of the junction. Finally, we show that by changing
the relative phase �, it is possible to tune the junction through a first-order quantum phase transition in which
the spin polarization of the two superconductors’ combined ground state changes from �Sz�=0 to �Sz�=1 /2.
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I. INTRODUCTION

Heterostructures consisting of magnetically active layers
provide new possibilities for manipulating charge �and po-
tentially spin� transport and are hence of great interest for the
field of spin electronics.1 Josephson junctions consisting of
conventional s-wave superconductors and a ferromagnetic
barrier fall into this category, and their study has led to the
discovery of a number of fundamentally new phenomena
�for a recent review, see Ref. 2 and references therein�.
Among these is the transition from a 0 state to a � state in
junctions with a metallic ferromagnetic barrier, which is ac-
companied by a sign change �and hence directional change�
in the Josephson current. This transition signifies an intrinsic
phase change of � between the superconductors forming the
Josephson junction which arises from a temperature-
dependent decay length and oscillation length of the super-
conducting order parameter inside the ferromagnetic metal.
Such a transition was predicted theoretically3 and subse-
quently also observed experimentally.4 It was recently
shown, by using a phenomenological S-matrix scattering for-
malism, that a sign change in the Josephson current with
increasing temperature can also occur in insulating ferromag-
netic barriers.5,6 Changing the direction of the Josephson cur-
rent by increasing temperature or by varying the relative
phase between the superconductors leads to novel types of
current switches that possess potential applications in quan-
tum information technology.1,7 Since most ferromagnetic
barriers possess not only a magnetic scattering potential but
also a nonmagnetic one, the question naturally arises to what
extent the interplay between these two types of scattering
potentials either alters the effects discussed above or leads to
qualitatively new phenomena.

In this paper, we study the Josephson current, IJ, in a
one-dimensional �1D� Josephson junction consisting of two
s-wave superconductors and a thin ��-function type� ferro-
magnetic barrier �SFS junction�. We start from a microscopic

Hamiltonian in which the barrier possesses magnetic and
nonmagnetic scattering potentials, described by g and Z, re-
spectively, with the former being directly proportional to the
barrier magnetization. We discuss the general dependence of
the charge Josephson current on g, Z, and the relative phase,
�, between the two superconductors. In particular, we dem-
onstrate that in certain regions of the �g ,Z� plane, IJ varies
continuously with �, while in other regions, and particularly
around Z=g, IJ exhibits discontinuities. We compute the
critical current, Ic, defined as the maximum Josephson cur-
rent for a given g and Z, and we show that it possesses two
lines of nonanalytic behavior in the �g ,Z� plane. These
nonanalyticities correspond to discontinuities in the first and
second derivatives of Ic �with respect to g or Z�. We show
that Ic exhibits qualitatively different dependencies on the
scattering strength in different parts of the �g ,Z� plane,
which opens the interesting �and quite counterintuitive� pos-
sibility to increase the critical current through the junction by
increasing the junction magnetization. Moreover, we identify
those regions of the �g ,Z� plane in which the Josephson cur-
rent changes sign �and thus direction� with increasing tem-
perature without a change in the relative phase between the
two superconductors, i.e., without a transition between the 0
and � states of the junction. In addition, we find that while
the total spin Josephson current, Is, flowing through the junc-
tion is zero, there are two contributions to Is, arising from the
Andreev and continuum states, respectively, that are equal in
magnitude but possess opposite signs. We show that if these
two contributions can be independently measured, this would
open exciting venues for employing the combined spin and
charge degrees of freedom in such a junction. Finally, we
demonstrate that by changing the phase � between the su-
perconductors, it is possible to tune the junction through a
first-order quantum phase transition in which the spin polar-
ization of the two superconductors’ combined ground state
changes from �Sz�=0 to �Sz�=1 /2. The theoretical methods
used in this study provide direct insight into the explicit de-
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pendence of the Josephson current and the Andreev states on
the magnetization of the junction and into the interplay be-
tween magnetic and nonmagnetic scattering potentials.

II. THEORETICAL METHODS

We take the 1D SFS junction to be aligned along the z
axis and to be described by the Hamiltonian

H =� dz��
�

��
†�z��−

�2�z
2

2m
− 	 + U�z�	���z�

− 

�z��↑
†�z��↓

†�z� + H.c.�

−
ge	B	0

�
M�z� · �

�,�
��

†�z��� �����z�� , �1�

where ��
†�z� and ���z� are the fermionic operators that create

or annihilate a particle with spin � at site z, respectively.

�z� is the s-wave superconducting gap, and U�z�=U0��z�
describes the nonmagnetic �i.e., potential� scattering strength
of the junction at z=0. Without loss of generality, we choose
the magnetization of the junction, M�z�, to be parallel to the
z axis, i.e., M�z�=M0�0,0 ,1���z�. In order to simplify the
notation, we set ge	B	0 /�=1. Moreover, to facilitate the dis-
cussion of the spin structure of the Josephson current and the
junction ground state, we choose the quantization direction
to coincide with the direction of the magnetic moment, i.e.,
with the z direction.

In the following, we use two complementary theoretical
approaches in order to compute the Josephson current
through the interface. One follows the Blonder-Tinkham-
Klapwijk �BTK� approach8 �see Sec. II A� and the other one
starts from the quantum-mechanical definition of the current
operator and computes its expectation value �see Sec. II B�.

A. BTK ansatz

At the interface between the two superconductors, two
Andreev bound states9 with energies E�,� are formed.6,10 As
was discussed before,8,11,12 and as we will explicitly show in
Sec. II B, the charge Josephson current flows solely through
these two bound states and is hence given by12

IJ = IJ
� + IJ

� = −
e

�
�

j=�,�

�Ej

��
tanh Ej

2kBT
� , �2�

where � is the phase difference between the superconducting
order parameters on the left and right sides of the junction. In
order to compute E�,�, we start from Eq. �1� and derive the
Bogoliubov–de Gennes �BdG� equation12–15 by introducing
the unitary Bogoliubov transformation

�↑�z� = �
n

un,��z��n + vn,�
� �z��n

†, �3a�

�↓�z� = �
n

− un,��z��n + vn,�
� �z��n

†, �3b�

where the sum runs over all eigenstates of the junction and
�n ,�n are quasiparticle operators in terms of which the
Hamiltonian, Eq. �1�, is diagonal. Defining

n,j�z� � un,j�z�
vn,j�z�

� �4�

with j=� ,�, the BdG equation is given by

Ĥjn,j�z� = En,jn,j�z� . �5�

Here En,j is the energy of the state n,j,

Ĥj = H0 � HM − 


− 
� − H0 � HM
� , �6�

where the upper �lower� sign corresponds to j=���� and

H0 � −
�2�z

2

2m
− 	 + U0��z� , �7a�

HM � M0��z� , �7b�


 � �
0 z � 0


0e−i� z � 0,
� �7c�

with 
0 chosen real. The case n=0 corresponds to the An-
dreev bound states, and in what follows, we use Ej as a
shorthand notation for their energies, E0,j.

For the bound-state wave function on the left- and right-
hand sides of the junction, 0,j,L�z� and 0,j,R�z�, respec-
tively, we make the ansatz

0,j,s�z� = ecs�jz �
�=�

u0,j,s,�

v0,j,s,�
�e�ikFz, �8�

with s=L ,R, cL,R= �1, and kF is the Fermi momentum. Note
that the decay length of the Andreev state, � j

−1

=�vF /�
0
2−Ej

2 with vF=�kF /m, itself depends on Ej. The
solutions of Eq. �5� are subject to the boundary conditions

0,j,L�0� = 0,j,R�0� , �9a�

�z0,j,R�0� − �z0,j,L�0� =
2m

�2 U0 � M0

U0 � M0
�

�0,j,R�0� , �9b�

where again the upper �lower� sign corresponds to j=����.
In the limit kF�� j, which holds for superconductors with
coherence length �c=vF /
0�1 /kF, the solution of the BdG
equation yields two Andreev states with energies

Ej


0
=

�A + B � �A − B
�2
1 + �g + Z�2�
1 + �g − Z�2�

, �10�

where the upper �lower� sign corresponds to j=���� and

A = �1 + Z2 − g2�
cos2��/2� + Z2 − g2� + 2g2, �11a�

B = �
1 + �g + Z�2�
1 + �g − Z�2�
cos2��/2� + Z2 − g2� ,

�11b�

with g=mM0 /�2kF and Z=mU0 /�2kF. Without loss of gen-
erality we assume g ,Z�0 from here on. While E� does not
change sign as a function of � �for Z�0�, E� changes sign if

KASTENING et al. PHYSICAL REVIEW B 79, 144508 �2009�

144508-2



0�g2−Z2�1 �hence for g�Z or g��1+Z2, no sign
change in either bound state takes place�. This sign
change, which occurs at a phase difference �c

� given by
cos2��c

� /2�=g2−Z2, indicates a first-order phase transition in
which the spin polarization of the superconductors’ ground
state changes, as discussed in more detail in Sec. III C.

For the subsequent discussion, it is necessary to consider
the spin structure of the Andreev states. To this end, we
compute the local density of states �LDOS�, N�� ,z� �i.e., the
local spectral function�, for the spin-↑ and spin-↓ compo-
nents of the Andreev states, which, using the Bogoliubov
transformation presented in Eq. �3�, are readily obtained as

N�↑ ,z� = �u0,��z��2��� − E�� + �v0,��z��2��� + E�� ,

�12a�

N�↓ ,z� = �u0,��z��2��� − E�� + �v0,��z��2��� + E�� .

�12b�

Hence �for E�����0�, the wave function of the � state,
�0,��, possesses a particlelike spin-↓ component, and a
holelike spin-↑ component, i.e., �0,��= �p ,↓�+ �h ,↑�. Simi-
larly for the � state, �0,��= �p ,↑�+ �h ,↓�. When E� changes
sign, the occupation numbers of the spin-↑ and spin-↓ com-
ponents of the respective wave function are interchanged. We
thus find that the LDOS near the junction barrier contains
four peaks inside the superconducting gap, in agreement with
the results obtained in Refs. 6 and 10. As an important check
of our calculations, we consider the limit �=0, where the
Josephson junction is identical to a system, in which a single
magnetic impurity is located inside a 1D s-wave supercon-
ductor. In this limit, Eq. �10� yields that only one of the
Andreev states exists inside the superconducting gap with
E��
0, while the other Andreev state possesses the energy
E�=
0 and is thus part of the continuum 
see Fig. 1�a��.
These results are in agreement with those of the T̂-matrix and
Bogoliubov–de Gennes approaches used in the context of
impurity scattering in s-wave superconductors �for a recent
review, see Ref. 16�. We note that in this limit, �=0, our
results �and those of Ref. 16� for E�,� do not agree with the
findings in Refs. 5 and 6 �see also Ref. 17�.

B. Quantum-mechanical current

Using the operator definition of the quantum-mechanical
current, we may resolve the spin-↑ and spin-↓ particle cur-
rents I↑�z� and I↓�z�, which in turn allows to compute the
charge and spin currents via

IJ�z� � − e
I↑�z� + I↓�z�� , �13a�

IS�z� �
�

2

I↑�z� − I↓�z�� . �13b�

In order to obtain appropriately defined current operators

Î↑�z� and Î↓�z�, whose expectation values are the currents
I↑�z� and I↓�z�, we note that the density operator of spin-�
electrons is

�̂��z� = �̂��z,z���z�=z, �14�

where

�̂��z,z�� � ��
†�z����z�� . �15�

The quantum-mechanical particle current operator corre-
sponding to �̂��z� then follows from

Î��z� =
i�

2m

��z − �z���̂��z,z����z�=z

=
i�

2m
�
�z��

†�z�����z� − ��
†�z�
�z���z��� , �16�

and its expectation value

I��z� =
�

m
Im���

†�z�
�z���z��� �17�

is the corresponding particle current. In what follows, we
refer to I��z� as the “conventional” form of the particle cur-
rent.

After diagonalizing the Hamiltonian with the Bogoliubov
transformation of Eq. �3�, the currents given in Eq. �13� pos-
sess in general contributions from both the Andreev bound
states and the continuum states. The calculation of the latter
is prohibitively cumbersome when using the form of I� given
in Eq. �17�. It turns out, however, that one can use an alter-
native formulation to evaluate I� by defining a “symme-
trized” form of the current operator. Specifically, using the
anticommutator

���
†�z�,����z��� = ������z − z�� , �18�

we can write

�̂��z,z�� �
1

2

��z − z�� + ��

†�z����z�� − ���z����
†�z�� .

�19�

We next define a symmetrized density via

�̂�
sym�z,z�� �

1

2

��

†�z����z�� + ���z���
†�z��� , �20�

where the second term on the right-hand side of Eq. �20�
arises from the first term via a particle-hole transformation

this fact becomes important when discussing the form of the
LDOS corresponding to �̂�

sym�z ,z�, see below�. Since the
�-function in Eq. �19� does not contribute to the particle
current operator, it immediately follows that the densities
defined in Eqs. �19� and �20� when inserted into Eq. �16�
yield the same spin-� particle current operator. We can there-

fore write Î� in a symmetrized form as

Î��z� =
i�

2m

��z − �z���̂�

sym�z,z����z�=z

= −
i�

4m
���

†�z�
�z���z�� + ���z�
�z��
†�z�� − H.c.� .

�21�

One then obtains
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I��z� =
�

2m
Im���

†�z��z���z� + ���z��z��
†�z�� �22�

as the corresponding symmetrized form of the spin-� particle
current. While the current thus defined is identical to the
conventional form given in Eq. �17�, it turns out that the
calculation of the contributions from continuum states using
the right-hand side of Eq. �22� is considerably simplified. In
what follows, we therefore discuss the contributions of con-
tinuum and Andreev states to the charge and spin current
using the symmetrized form of the particle current, Eq. �22�.

Since the contributions to the particle current arising from
individual �Andreev or continuum� states are different in the
conventional and the symmetrized forms, we distinguish be-
tween them by denoting with �without� a tilde the current
flowing through a specific state within the symmetrized �con-
ventional� definition. We then obtain

I↑�↓��z� = �
n

Ĩ↑�↓�,n�z� , �23�

where

-1

0

1

E
[∆
0
]

0 π 2π

φ

(a)

-1

0

1

E
[∆
0
]

-1

0

1

E
[∆
0
]

-1

0

1

E
[∆
0
]

0 π 2π

φ
0 π 2π

φ
0 π 2π

φ

<Sz>=1/2

(b)

-1

0

1

-1

0

1

-1

0

1

-1

0

1

0 π 2π

φ
0 π 2π

φ
0 π 2π

φ
0 π 2π

φ

I J
[e
∆
0
/h
]

I J
[e
∆
0
/h
]

I J
[e
∆
0
/h
]

I J
[e
∆
0
/h
]

<Sz>=1/2

FIG. 1. �Color online� �a� En-
ergies �E�,� of the Andreev
states. The columns from left to
right correspond to g=0, 1

3 , 2
3 ,1,

respectively, while the rows from
bottom to top correspond to
Z=0, 1

3 , 2
3 ,1, respectively. The en-

ergies of the � and � states are
indicated by red �gray in print�
and black lines, respectively,
while the spin-↑ and spin-↓ com-
ponents are indicated by dashed-
dotted and solid lines. For g=0
�left column� the � and � states
are degenerate. �b� The resulting
IJ at T=0 for several g and Z as a
function of �.
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Ĩ↑,n�z� � In,�
u �z�tanh

�En,�

2
+ In,�

v �z�tanh
�En,�

2
, �24a�

Ĩ↓,n�z� � In,�
u �z�tanh

�En,�

2
+ In,�

v �z�tanh
�En,�

2
, �24b�

with amplitude functions

In,j
f �z� �

�

2m
Im
fn,j�z��zfn,j

� �z�� , �25�

where f =u ,v and j=� ,�, and the sum in Eq. �23� runs over
all states of the system �including Andreev and continuum
states�.

We begin by computing the contribution to the total cur-
rent arising from the continuum states. Using the general
ansatz for the form of these states described in Appendix A,
we find that the continuum states with momentum ��kF�q�
are degenerate and that their energy Eq is given by �in the
limit Eq�	�

Eq
2 = �
0�2 + �2kFq

m
�2

. �26�

Diagonalizing the corresponding subspace, one obtains three
important relations,

�
n�Eq�


Ĩ↑,n�z� + Ĩ↓,n�z�� � sin 2q�z� , �27a�

�
n�Eq�


Ĩ↑,n�z� − Ĩ↓,n�z�� = 0, �27b�

�
n�Eq�

In,����
u �z = 0� = �

n�Eq�
In,����
v �z = 0� , �27c�

where the sums run over an orthonormal basis of continuum
states with energy Eq. The first relation, Eq. �27a�, implies
that given the definition of the charge Josephson current, IJ,
in Eq. �13a�, the contribution to IJ from the continuum states
at the interface is identically zero within the symmetrized
version of the current. As we show below, this result also
holds when the conventional definition of the current opera-
tor is used. General arguments have been put forward that
this result arises since the density of continuum states in the
presence of a barrier is unchanged.18 However, away from
the interface the continuum states carry a nonzero charge
current since charge conservation requires that the �decay-
ing� current through the Andreev states be compensated by a
current carried through the continuum states. The second re-
lation, Eq. �27b�, implies that the contribution of the con-
tinuum states to the spin Josephson current, as defined in Eq.
�13b�, is zero at any position z along the junction. Finally, the
third relation, Eq. �27c�, when combined with Eq. �24�,
yields that at the barrier, there are no contributions from the
continuum states to either the spin-↑ or spin-↓ particle cur-
rent.

Since the continuum states carry no charge current at the
barrier �i.e., at z=0�, the total charge Josephson current is
solely carried by the Andreev states and thus given by

IJ � IJ�0� = − e
Ĩ↑
AS�0� + Ĩ↓

AS�0�� , �28�

where Ĩ↑,↓
AS are the currents through the Andreev states in the

symmetric formulation of the current. These are given by the
n=0 term in Eq. �23� for which one thus has

Ĩ↑
AS�z� = I0,�

u �z�tanh
�E�

2
+ I0,�

v �z�tanh
�E�

2
, �29a�

Ĩ↓
AS�z� = I0,�

u �z�tanh
�E�

2
+ I0,�

v �z�tanh
�E�

2
. �29b�

It is straightforward to show that the bound-state ansatz of
Eq. �8� leads to

I0,�
u �z� = I0,�

v �z� � e−2��z�, �30a�

I0,�
u �z� = I0,�

v �z� � e−2��z�, �30b�

yielding Ĩ↑
AS�z�= Ĩ↓

AS�z�. Together with Eq. �27b�, this result
implies that within the symmetrized form of the particle cur-
rent, Eq. �22�, neither the continuum states nor the Andreev
bound states carry a spin current. Hence, we obtain that the
total spin current IS�z� defined in Eq. �13b� vanishes at any
point along the junction, in agreement with the arguments in
Ref. 19. This result holds even when the system undergoes a
first-order quantum phase transition in which the spin polar-
ization of the junction ground state changes �see Sec. III C�.

While the symmetrized form of the Josephson current
used above allowed for a simpler evaluation of the contribu-
tions arising from the continuum states, any physical inter-
pretation of the Josephson current has to be based on its
conventional definition, given by Eq. �16�, and the form of
the spin density in Eq. �15�. In what follows, we therefore
discuss the form of the charge and spin currents within the
conventional definition and compare them with the symme-
trized results presented above. A connection between the ex-

pressions for Ĩ�,n and I�,n �which represent the currents flow-
ing through state n in the symmetrized and conventional
definition, respectively� can be made by using the following
identities:

�
n


In,�
u �z� − In,�

v �z�� = 0, �31a�

�
n


In,�
u �z� − In,�

v �z�� = 0, �31b�

where, as in Eq. �23�, the sum runs over all states of the
junction. These identities are derived by applying �z−�z� to
the anticommutator in Eq. �18�, and subsequently setting
��=� and z�=z, and using the form of �↑�z� and �↓�z� given
in Eq. �3�. One then finds that by subtracting the left-hand
side of Eq. �31a� 
Eq. �31b�� from the right-hand side of Eq.
�23� for �=↑ 
�=↓�, one obtains the corresponding expres-
sions for I�,n. In particular, within the conventional defini-
tion, the Josephson current through the Andreev bound states
is given by
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I↑
AS�z� = − I0,�

u �z�1 − tanh
�E�

2
� + I0,�

v �z�1 + tanh
�E�

2
� ,

�32a�

I↓
AS�z� = − I0,�

u �z�1 − tanh
�E�

2
� + I0,�

v �z�1 + tanh
�E�

2
� .

�32b�

Given the result for IJ in Eq. �28�, it immediately follows that

IJ = − e
I↑
AS�0� + I↓

AS�0�� , �33�

implying that also within the conventional definition of the
particle current, the total charge Josephson current at z=0 is
solely carried by the Andreev states with no contribution
arising from the continuum states. This result justifies the use
of Eq. �2� in the BTK approach of Sec. II A for the calcula-
tion of the total charge Josephson current. Moreover, since
the charge Josephson currents computed within the BdG ap-
proach of Sec. II A should be the same as that of the
quantum-mechanical method of Sec. II B, one requires 
by
combining Eqs. �2�, �28�, �29a�, �29b�, �30a�, and �30b�� that
the following important identity be satisfied:

�Ej

��
= 2�I0j

v �0� , �34�

with j=� ,�. We have carried out an extensive numerical
survey in the parameter space of our system and found this
relation to always hold.

We next consider the form of the spin current in the con-
ventional definition of the currents. While the result of a
vanishing total spin current, which we obtained within the
symmetrized form, also has to hold within the conventional
framework, we find that the contributions from the Andreev
and continuum states differ. In particular, using the results of
Eq. �32�, we find that the contribution of the Andreev states
to the spin current, IS

AS, is given by

IS
AS�z� = �
I0,�

v �z� − I0,�
v �z�� , �35�

which in general does not vanish. However, since the total
spin current still needs to be zero, it immediately follows that
within the conventional definition of the particle current, a
spin current of equal magnitude but opposite sign to IS

AS

flows through the continuum states. Note, however, that
while a spin Josephson current flows through the continuum
states, the charge current through these states is zero, as dis-
cussed above. The contribution to the spin current provided
by the continuum states thus compensates the spin current
through the Andreev states and leads to a zero total spin
current 
we return to a discussion of these two �opposite�
contributions to the spin current in Sec. III B�. In contrast, in
the symmetrized version, the spin currents through the con-
tinuum states on one hand, and the Andreev states on the
other hand, are exactly zero.

In order to understand the different origin of the zero-spin
current in these two frameworks and to gain insight into its
physically correct interpretation, we consider the local den-

sity of states of the Andreev states, Nsym�� ,z�, corresponding
to the density ��

sym�z�= ��̂�
sym�z ,z��, which is given by

Nsym�↑ ,z� =
1

2
�u0,��z��2
��� − E�� + ��� + E���

+
1

2
�v0,��z��2
��� + E�� + ��� − E��� ,

�36a�

Nsym�↓ ,z� =
1

2
�u0,��z��2
��� − E�� + ��� + E���

+
1

2
�v0,��z��2
��� + E�� + ��� − E��� .

�36b�

Here, the second term on the right-hand side of each equa-
tion is obtained from the first one via a particle-hole trans-
formation, in agreement with the definition of �̂�

sym�z ,z�� in
Eq. �20�. As a result, the system now possesses two sets of
two degenerate bound states, i.e., a total of four Andreev
bound states, each with a spectral weight of 1/2. Within each
set, the degenerate bound states differ by their spin quantum
number: one bound state possesses a particle �hole� branch
which is spin ↑ �spin ↓� and vice versa for the second bound
state. Using the relations in Eqs. �30� and �34� and the defi-
nition of the Josephson current in Eqs. �2� and �13a�, one
immediately finds that such a LDOS leads to the expressions

for Ĩ↑,↓
AS�z� given in Eq. �29�. Since the spin quantum numbers

are opposite between the degenerate bound states, it naturally
follows that the spin current through the Andreev states is
zero. Note, however, that the LDOS given in Eq. �36� is
unphysical; it does not reflect the symmetry breaking of the
ferromagnetic barrier since for every spin-↑ branch, there
exists a degenerate spin-↓ branch. Moreover, in the limit
�=0 �where the barrier represents a single magnetic impu-
rity in a 1D s-wave superconductor�, the symmetrized LDOS
of Eq. �36� is in disagreement with that obtained from the

T̂-matrix and Bogoliubov–de Gennes approaches.16 In con-
trast, the LDOS of Eq. �12� which is based on the conven-
tional definition of the density operator reflects the symmetry
breaking of the ferromagnetic barrier. It is therefore physical
and in full agreement with the results of Ref. 16 for �=0. It
then follows that the physically correct interpretation regard-
ing the origin of a zero total spin current is that both the
Andreev states and the continuum states carry a spin current
of equal magnitude but opposite sign. We propose that this
conclusion can be tested by using a spin-resolved scanning
tunneling microscopy �STM� experiment which can distin-
guish between the LDOS presented in Eq. �12� on one hand
and that given in Eqs. �36� on the other hand.

III. RESULTS

A. Charge transport

The general dependence of the Andreev state energies and
the Josephson current on the scattering strength of the barrier
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is presented in Fig. 1 where we plot �E�,� 
Fig. 1�a�� and
the resulting Josephson current at T=0 
Fig. 1�b�� as a func-
tion of � for several values of Z and g 
the columns in Figs.
1�a� and 1�b� from left to right correspond to g=0, 1

3 , 2
3 ,1,

respectively, while the rows from bottom to top correspond
to Z=0, 1

3 , 2
3 ,1, respectively�. For a purely nonmagnetic bar-

rier 
i.e., g=0, left column of Fig. 1�a��, we find in agreement
with earlier results6,12–14,20 that the Andreev states are degen-
erate with energies,

E�,�


0
=�cos2��/2� + Z2

1 + Z2 . �37�

This degeneracy is lifted by a nonzero magnetic scattering
potential of the junction �i.e., g�0� as shown in the three
right columns of Fig. 1�a�. A qualitatively similar result was
also found in Refs. 6, 10, 17, and 19. Specifically, for a
purely magnetic scattering potential of the junction 
i.e.,
Z=0, bottom row of Fig. 1�a��, the energies of the Andreev
states are given by

E�,�


0
=

1

1 + g2 
cos��/2� � g�g2 + sin2��/2�� . �38�

In agreement with the analytical results presented in Eqs.
�37� and �38� we find that with increasing g�Z 
plots in the
lower-right corner of Fig. 1�a�� and Z�g 
plots in the upper-
left corner of Fig. 1�a��, the energies of both bound states
move toward the gap edge. An interesting situation occurs
for g=Z 
plots along the diagonal of Fig. 1�a��, since in this
case, the effective scattering strength for the spin-↓ and
spin-↑ electrons is Veff

↓ =g+Z=2Z and Veff
↑ =g−Z=0, respec-

tively. In the unitary scattering limit g=Z�1, we then find
that the energies of the Andreev states are given by

E�


0
=

cos2��/2�
2Z

+ O�Z−3� , �39a�

E�


0
= 1 −

sin4��/2�
8Z2 + O�Z−4� . �39b�

Hence, in the limit g=Z→�, the � state becomes a zero-
energy �midgap� state, while the � state moves into the con-
tinuum. This analytical result is confirmed by the numerical
results shown in the plots along the diagonal of Fig. 1�a�.

We next discuss the form of the Josephson current, result-
ing from the form of the Andreev states shown in Fig. 1�a�.
In the unitary scattering limit Z�max�g ,1� the Josephson
current at T=0 is given by �to leading order in Z�

IJ =
e
0

�

sin �

2Z2 , �40�

while for g�max�Z ,1� one obtains to leading order in g,

IJ = −
e
0

�

sin �

2g2 . �41�

Hence, the Josephson currents for a predominantly nonmag-
netic 
Eq. �40�� and predominantly magnetic 
Eq. �41�� bar-
rier differ by a phase shift of � in the unitary scattering limit.
This result also follows from a comparison of the IJ plots in

the upper-left �Z�g� and lower-right �g�Z� corners of Fig.
1�b�.

Whether the Josephson current in the junction considered
here is carried by Cooper pairs, or by single electrons, de-
pends on the relative strength of g and Z. We first recall that
in a purely nonmagnetic junction �i.e., g=0�, it was argued
that the dependence of the Josephson current on Z in the
unitary scattering limit, IJ�Z−2 
see Eq. �40��, implies that
the current is carried by Cooper pairs.13,14 In contrast, in
Josephson junctions consisting of unconventional supercon-
ductors, the scaling of the Josephson current, IJ�Z−1, im-
plies that it is carried by single electrons.14 Here, we find that
for a predominantly magnetic junction with g�max�Z ,1�, IJ
also scales with the inverse square of the scattering strength

see Eq. �41�� and the current should thus also be carried by
Cooper pairs. In contrast, for the case Z=g→�, we obtain
IJ�Z−1 and the Josephson current should thus be carried by
single electrons. Further support for this conclusion comes
from considering the dependence of E� on the scattering
strength in the limit �=0. As mentioned above, in this case,
the junction is identical to a static impurity in a �1D� s-wave
superconductor.21 If the impurity is purely magnetic, the An-
dreev state � �which is better known in this context as a
Shiba state� is formed through scattering processes involving
the creation and destruction of Cooper pairs. This immedi-
ately follows from a diagrammatic derivation of the scatter-

ing T̂ matrix which includes diagrams that contain the
anomalous Green’s functions, F and F�, representing the cre-
ation and destruction of Cooper pairs, respectively.21 As a
direct result of the included anomalous Green’s functions,
one obtains E��g−2, as in Eq. �38� which immediately leads
to IJ�g−2 for ��0. In contrast, for an impurity with scat-

tering strength Veff
↓ =2Z and Veff

↑ =0, the T̂ matrix is given by
a series of diagrams that contain the normal Green’s function
only �diagrams containing F and F� are forbidden�, and
hence E��Z−1. Note that for the same reason, Josephson
junctions consisting of unconventional superconductors pos-
sess Andreev states whose energies also scale as Ei�Z−1.
This connection between the scaling of E� and IJ for ��0
with the case of impurity scattering for �=0 demonstrates
that the presence or absence of scattering diagrams involving
the anomalous Green’s function determines the nature of the
Josephson current.

While the Josephson current is a continuous function of �
for certain combinations of Z and g, IJ also exhibits discon-
tinuities, in particular, in the vicinity of Z�g, as shown in
Fig. 1�b�. These discontinuities arise from a zero-energy
crossing of an Andreev state at a certain phase, �LC, where
�E�,� /���0, as shown in Fig. 1�a�. Since at T=0, only the
negative-energy branches of the bound states are populated
and thus contribute to IJ, �E�,� /���0 leads to a discontinu-
ity in the Josephson current at �LC. In Fig. 2�a�, we present a
contour plot that represents in which parts of the �g ,Z� plane
IJ exhibits a continuous or discontinuous dependence on �.
In the white regions of Fig. 2�a�, IJ is continuous, while in
the gray and black regions, which are located in the vicinity
of the Z=g line, it exhibits discontinuities as � is varied.

This change between continuous and discontinuous be-
haviors of IJ in the �g ,Z� plane leads to an interesting form
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of the critical current, Ic. Here, we define Ic for a given g and
Z as the maximum absolute value of IJ for any 0����,
i.e., Ic=max�
�IJ�����. At that value of �, for which �IJ����
exhibits the maximum value, IJ possesses either a continuous
extremum or a discontinuity. In the light �dark� gray areas of
Fig. 2�a�, Ic is realized at a continuous extremum �disconti-
nuity�, while the discontinuity �continuous extremum� real-
izes a local maximum of �IJ� only. In the black regions of
Fig. 2�a�, no continuous extremum exists. In order to inves-
tigate the origin of the qualitatively different behavior of IJ in
the white, gray, and dark regions, we consider six pairs of
values �g ,Z�, denoted by the dots in Fig. 2�a�, and present
the resulting Josephson currents as a function of � in
Fig. 2�b�. We find that the different behavior in the gray and
black regions arises from a shift in the values of � at which
the discontinuity in IJ occurs. As one moves from points �1�
to �6� in Fig. 2 two discontinuities first emerge at �=� and
then move symmetrically toward �=0 and �=2�, respec-
tively.

In Fig. 3�a�, we present a contour plot of the critical cur-
rent in the �g ,Z� plane, with the white �dark gray� areas
indicating a large �small� critical current. An analytical ex-
pression for the critical current in the �g ,Z� plane can be
obtained along the lines g=0 and for Z=0, where one finds

Ic�g = 0,Z� =
e
0

�
1 −

Z
�1 + Z2� , �42�

Ic�g,Z = 0� = �
e
0

�

�1 − g2

1 + g2
0 � g � gm

e
0

�
 g

�1 + g2
−

g2

1 + g2� g � gm, �
�43�

where gm�0.915 186 is the largest real solution of the equa-
tion 4g6−4g2+1=0.

Even though the critical current is a continuous function
of g and Z, it possesses two lines of nonanalyticity in the
�g ,Z� plane that asymptotically approach Z=g for Z ,g→�.
These lines are represented in Fig. 3�a� as solid black lines.
Line �1�, corresponding to the boundary between the light
gray and black regions in Fig. 2�a�, represents a discontinuity
in the second derivative of Ic. In contrast, line �2�, which
corresponds to the boundary between the light gray and dark
gray regions in Fig. 2�a�, represents a discontinuity in the
first derivative of Ic. Line �2� also represents a sign change in
that value of IJ which determines Ic. In other words, to the
left �right� of line �2�, Ic is realized by a positive �negative�
value of IJ. These nonanalyticities become particularly ap-
parent when one plots the critical current as a function of g
�for constant Z� and Z �for constant g�, as shown in Figs. 3�b�
and 3�c�, respectively 
in Fig. 3�b�, we indicated the nonana-
lyticities for the curve with Z=1 /2 by arrows�.

The different dependence of IJ on the scattering strength
in the limits g�Z or Z�g 
see Eqs. �40� and �41�� on one
hand and g=Z�1, where

IJ
� =

e
0

�

sin �

4Z
, �44a�

IJ
� =

e
0

�

sin ��1 − cos ��
16Z2 , �44b�

on the other hand leads to the interesting possibility to in-
crease the critical current by increasing the magnetization,
and hence the scattering strength of the barrier. Specifically,
we find Ic=

e
0

2� g−2 for g�Z and Ic=
e
0

2� Z −2 for Z�g, while
for Z=g�1, we have Ic=

e
0

4� Z −1. As a result, we find that for
fixed Z�1 and increasing g, the critical current exhibits a
maximum at Z=g. This effect is demonstrated in Fig. 4
where we present Ic as a function of g for Z=20. Hence, for
a given nonmagnetic scattering strength of a paramagnetic
barrier, it is possible to increase the critical current by in-
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FIG. 2. �a� Behavior of IJ��� in the �g ,Z� plane. White regions: IJ is continuous. Light �dark� gray regions: maximum of �IJ���� is
realized at a continuous extremum �discontinuity�. Black area: only extrema at discontinuities exist. The white regions are bounded by
Z2=g2 and by Z2=g2−1. �b� IJ��� at T=0 for the six parameter pairs �g ,Z� indicated by dots in �a�.
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creasing the magnetization of the barrier and thus its mag-
netic scattering strength. This increase in the magnetization
can, for example, be achieved by applying a local magnetic
field via atomic force microscopy.22

We next consider the temperature dependence of the Jo-
sephson current. Here, we find that the splitting of the An-
dreev states for a nonzero magnetic scattering strength can
lead to an unconventional temperature dependence of IJ in
which it changes sign with increasing temperature without a
change in the relative phase, �, between the two supercon-
ductors. This temperature dependence is demonstrated in
Fig. 5�a�, where we assume a BCS temperature dependence
of the superconducting gap. In order to understand this sign
change, we consider the � dependence of E�,� which is
shown in Fig. 5�b�. At T=0, only the branches indicated by 1

and 2, belonging to Andreev states � and �, respectively, are
occupied. Since the derivatives �E� /�� and �E� /�� possess
opposite signs, the Josephson currents through them, IJ

��0
and IJ

��0, flow in opposite directions with �IJ
��� �IJ

��. Since
with increasing temperature, the occupation of branches 2
and 3 changes more rapidly than those of branches 1 and 4,
it follows that the magnitude of IJ

� decreases more quickly
than that of IJ

�. As a result, the total current, IJ= IJ
�+ IJ

�, even-
tually changes sign. A possible sign change in IJ with in-
creasing temperature was previously also discussed in Refs.
5 and 6. However, due to the differences between our results
for E�,� and those in Refs. 5 and 6 �see also Ref. 17� it is
presently unclear whether the origin of the sign change in
Refs. 5 and 6 is the same as the one discussed here.

The qualitative nature of the temperature dependence can
be altered via a change in the couplings g and Z, as follows
from Fig. 5�a�. We find that in general, a sign change in IJ
with increasing temperature occurs when �a� the particlelike
components of both Andreev states possess the same spin
polarization and �b� � is chosen such that the energy differ-
ence between the Andreev states is sufficiently large. These
two conditions can easily be satisfied if at least one of the
Andreev states exhibits a zero-energy crossing and � is cho-
sen to be close to that crossing in the region where
�Sz�=1 /2. A zero-energy crossing, however, occurs only in
the gray and black regions of the �g ,Z� plane shown in Fig.
2�a�. Thus, in order to observe a sign change in IJ with tem-
perature, one should select a barrier whose scattering poten-
tials are close to the Z=g line. Note that a similar
temperature-dependent sign change is also predicted to occur
in Josephson junctions consisting of triplet superconductors
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and a ferromagnetic barrier.23 It is important to stress that the
temperature-dependent sign change discussed above is quali-
tatively different from the one reported by Ryazanov et al.4

There, the sign change arises from a transition of the junction
from a 0-phase state at high temperatures to a �-phase state
at low temperatures due to a temperature-dependent coher-
ence length.2 In contrast, in our case the sign change arises
from a change in the population of the Andreev states, with
the relative phase between the superconductors remaining
unchanged.

B. Spin transport through Andreev states

We argued in Sec. II B that the origin of the zero total spin
current lies in the fact that the spin current through the An-
dreev states is compensated by a spin current through the
continuum states that is equal in magnitude but opposite in
sign. The question thus naturally arises if it is possible to
separately measure these two contributions to the total spin
current. While one could envision several experimental set-
ups in which this could be achieved, for example, by using
two Josephson tunneling STM tips, one on each side of the
junction, we cannot provide a definite answer to this question
at the moment. However, the ability to measure these contri-
butions separately would open exciting venues for using the
combined spin and charge degrees of freedom in such a junc-
tion. In particular, it would be possible to make use either of
a spin polarized �nonzero� charge Josephson current by con-
sidering the current through the Andreev states or of a spin
Josephson current without a charge Josephson current by
considering the current through the continuum states. To ex-
emplify these possibilities, we consider in what follows the
spin polarization of the Josephson current through the An-
dreev states. We first define a spin polarization P of the
Josephson current via

P =
I↑

AS�0� − I↓
AS�0�

I↑
AS�0� + I↓

AS�0�
= − e

I↑
AS�0� − I↓

AS�0�
IJ

. �45�

For P=−1�+1�, the Josephson current through the Andreev

states is completely spin polarized and thus solely carried by
spin-↓ �spin-↑� electrons. In Fig. 6 we present P as a func-
tion of � for g=1 /3, Z=2 /3, and T=0 
the corresponding
charge Josephson current is shown in the second panel of the
second row in Fig. 1�b��. We find that P is nonzero for all �,
and its magnitude reaches a maximum at �=� /2 �note that
while P→−1 at �→0, one has at the same time IJ→0�. At
T=0, I↑

AS �I↓
AS� is carried solely by the occupied particlelike

branch of the � state �� state�, as follows immediately from
Eq. �32�. This is consistent with the observation in Eq. �12�
that the particlelike component of the � and � states possess
the spin quantum number Sz=−1 /2 �spin-↓� and Sz= +1 /2
�spin-↑�, respectively. Since �I0,�

v �� �I0,�
v � for all �, one finds

that the Josephson current through the Andreev states is par-
tially spin-↓ polarized, as shown in Fig. 6. The degree of spin
polarization varies with � due to the changing relative con-
tributions of I0,�

v and I0,�
v to IJ. Finally, for g=0, the two

Andreev states are degenerate, and hence P=0.

C. First-order quantum phase transition

Another interesting effect arising from the combination of
magnetic and nonmagnetic scattering strengths of the barrier
is the possibility to tune the Josephson junction through a
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first-order quantum phase transition in which the ground
state of the entire system �i.e., the combined ground state of
both superconductors� changes its spin polarization from
�Sz�=0 to �Sz�=1 /2 �assuming without loss of generality that
the magnetization of the barrier points along the ẑ axis�. This
type of first-order transition, which is well known from static
magnetic impurities in s-wave superconductors, where it was
first discussed by Sakurai,24 can occur either with increasing
scattering strength, J, of a magnetic impurity24 or due to
quantum interference effects;25 its fingerprint is a zero-
energy crossing of the impurity-induced fermionic states in-
side the superconducting gap. The phase transition arises
from a level crossing in the superconductor’s free energy, F,
resulting in a discontinuity of �F /�J at the transition, hence
the first-order nature of the transition �for a more detailed
discussion see Ref. 16�. The Josephson junction considered
here provides an exciting possibility to tune the system
through such a first-order phase transition by varying the
phase difference between the superconductors. In Appendix
B, we explicitly show that the change in the spin polarization
of the junction coincides with the zero-energy crossing of the
� state and is thus solely driven by the Andreev states. In
contrast, the contribution of the continuum states to the spin
polarization vanishes.

As an example of such a phase transition we consider the
case Z=1 /3 and g=2 /3, for which the energies of the An-
dreev states and the resulting Josephson current are shown in
the third panel in the third row of Figs. 1�a� and 1�b�, respec-
tively 
we indicate in the panel in Fig. 1�a� the spin quantum
number of all the components of the Andreev states�.
With increasing �, the � state crosses zero energy at
�c

�=2 arccos�g2−Z2�0.608�, such that for ���c
�, the

spin-↑ component of the � state is particlelike, while its
spin-↓ component is holelike. This transition results in a
change in the ground-state spin polarization from �Sz�=0 to
�Sz�=1 /2. Moreover, the � state crosses zero energy again at

�c
��=2
�−arccos�g2−Z2��1.392�, such that for ���c

��

its spin-↑ component is holelike, while its spin-↓ component
is particlelike. As a result, the spin ground state changes
from �Sz�=1 /2 back to �Sz�=0. The range of � for which
�Sz�=1 /2 is indicated in the panel of Fig. 1�b� by dotted
lines. In general, one finds that �Sz�=1 /2 for those � which
satisfy cos2�� /2��g2−Z2. Consequently, as g is further in-
creased �keeping Z fixed�, the range of � for which
�Sz�=1 /2 increases. When g exceeds the upper critical value
gc

�=�1+Z2, one finds �Sz�=1 /2 for all �. In contrast, when
g is smaller than the lower critical value gc

�=Z, one has
�Sz�=0 for all �. As already mentioned above, the total spin
current through the junction is zero even in a state with
�Sz�=1 /2.

IV. CONCLUSIONS

In summary, we have studied the Josephson current, IJ, in
a 1D Josephson junction consisting of two s-wave supercon-
ductors and a thin ��-function type� ferromagnetic barrier. To
this end, we used two complementary theoretical ap-
proaches: the BTK method and an approach starting from the
quantum-mechanical definition of the current operator. We

discussed the general dependence of the charge Josephson
current on g and Z, and the relative phase, �, between the
two superconductors. Specifically, we showed that in certain
regions of the �g ,Z� plane, IJ varies continuously with �,
while in other regions, and particularly around Z=g, IJ ex-
hibits discontinuities. We computed the critical current, Ic,
defined as the maximum Josephson current for a given g and
Z, and we showed that it possesses two lines of nonanalytic
behavior in the �g ,Z� plane. These nonanalyticities corre-
spond to discontinuities in the first and second derivatives of
Ic �with respect to g or Z�. We demonstrated that Ic exhibits
qualitatively different dependencies on the scattering
strength in different parts of the �g ,Z� plane, which opens the
interesting possibilities to increase the critical current
through the junction by increasing the junction’s magnetiza-
tion. This effect possesses potential applications in the fields
of quantum information technology.26 Moreover, we showed
that for certain values of g and Z, the Josephson current
changes sign �and thus direction� with increasing tempera-
ture without a change in the relative phase between the two
superconductors, i.e., without a transition between the 0 and
� states of the junction. We showed that this sign change is
entirely due to a temperature-dependent change in the occu-
pation of the Andreev states. In agreement with earlier re-
sults, we demonstrated that the continuum states do not con-
tribute to the charge current and that therefore, the charge
Josephson current is carried entirely by the Andreev states.
We also showed that while the total spin Josephson current
through the junction is zero, the Andreev states and the con-
tinuum states separately carry a nonzero spin current of equal
magnitude but opposite sign. The possibility of measuring
these contributions separately would open venues for em-
ploying the combined spin and charge degrees of freedom in
such a junction for potential applications in spin electronics
and quantum information technology. Finally, we demon-
strate that by changing the phase � between the supercon-
ductors, it is possible to tune the junction through a first-
order quantum phase transition in which the spin polarization
of the superconductor ground state changes between �Sz�=0
and �Sz�=1 /2.

Experimentally, the effects discussed here could be stud-
ied in junctions with magnetically doped insulating barriers
based on MgO, ZnO, or TiO2. In these materials one can
imagine varying g independently via the substitution of mag-
netic dopants such as Co, Mn, etc. and/or by changing their
concentration or by applying a small magnetic field, for ex-
ample, via atomic force microscopy.22 Moreover, Z can be
altered by the choice of material and the junction width. It is
possible to control the barrier width of complex oxides using
layer-by-layer growth techniques monitored by reflection
high-energy electron diffraction �RHEED� on the unit-cell
level, which is much smaller than the coherence length of a
typical s-wave superconductor. Hence, we expect that the
results derived above for a �-functional barrier should be
observable in experimental systems with a nonzero barrier
width, d, as long as d is much smaller than the superconduct-
ing coherence length. Note that the Josephson behavior
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described in this paper will occur in addition to the effects
that are expected from the proximity-induced sign change in
the superconducting order parameter as a function of the fer-
romagnetic barrier thickness.4

Finally, scattering off the barrier leads to a suppression of
the superconducting order parameter near the barrier, which
was not accounted for in the approach presented above.
However, in s-wave superconductors, the length scale over
which the order parameter recovers its bulk value near scat-
tering centers �such as a junction� is set by 1 /kF.27 This
length scale is in general much shorter than both the super-
conducting coherence length �c and the decay length of the
Andreev bound states, �−1, with �c��−1,12,14 and we thus
expect that the inclusion of a spatially varying order param-
eter does not alter the qualitative nature of our results pre-
sented above.
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APPENDIX A: CONTRIBUTION OF THE CONTINUUM
STATES TO IJ and IS

For the scattering state wave function of Eq. �4� we make
the ansatz

n,j�z� = �
�,�=�

un,j,s,�,�

vn,j,s,�,�
�ei��kF+�q�z, �A1�

with s=L ,R referring to the left- �z�0� and right
�z�0�-hand sides of the junction, respectively, with j=� ,�,
with q�0, and where kF is the Fermi momentum. The cor-

responding solutions of Eq. �5� are subject to the boundary
conditions in Eq. �9�. For a given Eq� �
�, there are eight
continuum states with a positive- and a negative-energy
branch for each. For energies that are small compared to the
Fermi energy, q is given by Eq. �26�.

Define

cosh � =
Eq


0
. �A2�

To be specific, consider the negative-energy branches with
energy −Eq. The BdG equations imply

yj,s,�,� � e���/2uj,s,�,� = ei�s−���/2v j,s,�,�, �A3�

with j=� ,� and s=L ,R and where we have omitted the
index n labeling the different states of energy −Eq.

With �L=0 and �R=−� and defining

ei�� �
1 + i�Z � g�
�1 + �Z � g�2

, �A4�

so that

−
�

2
� �� �

�

2
�A5�

and

Z =
1

2
�tan �+ + tan �−� , �A6a�

g =
1

2
�tan �+ − tan �−� , �A6b�

we may organize the boundary conditions 
Eq. �9�� in matrix
form by writing

zj � Mjyj,L = Mj
�yj,R, �A7�

with

yj,s
T = �yj,s,+,+,yj,s,+,−,yj,s,−,+,yj,s,−,−� �A8�

and

M�,� =�
e−�/2 e+�/2 e+�/2 e−�/2

e−i�/2+�/2 e−i�/2−�/2 e−i�/2−�/2 e−i�/2+�/2

e−i��−�/2 e−i��+�/2 − ei��+�/2 − ei��−�/2

e−i��−i�/2+�/2 e−i��−i�/2−�/2 − ei��−i�/2−�/2 − ei��−i�/2+�/2
� , �A9�

where the upper �lower� sign corresponds to � ���. Thus the
negative-energy scattering states for a given energy −Eq may
be represented by yi. Reinstating labels m and n for the dif-
ferent states for a given energy, we demand that for
continuum-normalized orthogonal states ym,j and yn,j hold,

�
s=L,R

�
�,�=�

ym,j,s,�,�
� yn,j,s,�,� = zm,j

† Qjzn,j = �mnCr�Eq� ,

�A10�

with
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Qj � �MjMj
†�−1 + �MjMj

†�−1�, �A11�

where Cr�Eq� is real and may be chosen to depend on the
energy Eq. That is, finding an orthonormal basis of scattering
states for a given energy boils down to diagonalizing the Qj
and using Eqs. �A3� and �A7� to obtain all corresponding
coefficients un,j,s,�,� and vn,j,s,�,�. Numerically, we find that

�
n�Eq�

��un,j,s,+,��2 − �un,j,s,−,��2� = 0, �A12a�

un,j,s,−,+
� un,j,s,+,+ − un,j,s,−,−

� un,j,s,+,− = 0, �A12b�

which are the same for the vn,j,s,�,�. Moreover, we numeri-
cally obtain

�
n�Eq�


un,j,s,+,−
� un,j,s,+,+ − un,j,s,−,−

� un,j,s,−,+�

= djAr�Eq� + icsAi�Eq� , �A13�

which are the same for the vn,j,s,�,�, with d�,�= �1 and cL,R
= �1, and where Ar�Eq� and Ai�Eq� are the dimensionless
and generally nonzero real coefficient functions.

It is straightforward then to show that

�
n�Eq�

Im�un,�
� �zun,� � vn,�

� �zvn,� � un,�
� �zun,� + vn,�

� �zvn,��

= �8kAi�Eq�sin 2q�z�
0,

� �A14�

leading immediately to the results in Eq. �27�.

APPENDIX B: SPIN GROUND STATE OF THE JUNCTION
AND FIRST-ORDER PHASE TRANSITION

The total spin of the system receives contributions from
both the Andreev bound states and the scattering states. De-
fine the spin density by

�̂S�z� =
�

2

�̂↑�z,z�� − �̂↓�z,z����z�=z, �B1�

with �̂��z ,z�� from Eq. �15�. It is then straightforward to
show that

�S�z� � ��̂S�z�� =
�

2 �
n
�
�n,u,��z� + �n,v,��z��tanh

�En,�

2

− 
�n,v,��z� + �n,u,��z��tanh
�En,�

2
� , �B2�

where

�n,f ,j�z� � −
1

2
fn,j

� �z�fn,j�z� , �B3�

with f =u ,v and j=� ,�.
Note that for any given energy, there exist pairs of con-

tinuum states that differ only in the spin quantum numbers of
their holelike and particlelike branches. This result, com-
bined with the normalization of the continuum states, then
yields that their contribution to the spin of the junction van-
ishes. Using next the normalization of the bound states

�
−�

+�

dz
u0,j
� �z�u0,j�z� + v0,j

� �z�v0,j�z�� = 1, �B4�

with j=� ,�, we obtain that the spin of the system is solely
determined by the Andreev bound states and given by

�Sz� = �
−�

+�

dz�S
AS�z� = −

�

4
tanh

�E�

2
− tanh

�E�

2
� .

�B5�

Since our conventions are such that E��0 always but the
sign of E� can vary, we obtain for T=0,

�Sz� = �0 E� � 0

�/2 E� � 0,
� �B6�

signaling a quantum phase transition caused by the zero-
energy crossing of one of the Andreev bound states.
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